Théorème 1 (Extrêma liés). Soit U un ouvert de E, $g_1, ..., g_k$ C^1 de U dans \mathbb{R} et \mathcal{M} la sous variété de E définie par les équations $g_i(x) = 0$ $\forall i$. On suppose que les $d_x g_i$ sont linéairement indépendantes $\forall x \in U$. Si $f: U \to \mathbb{R}$ différentiable et si $f|_{\mathcal{M}}$ admet un extrêmum en $m \in \mathcal{M} \cap U$, alors $\exists \lambda_1, ..., \lambda_k \in \mathbb{R} \mid d_m f = \lambda_1 d_m g_1 + ... + \lambda_k d_m g_k$.

Démonstration. On admet ici que $T_m \mathcal{M} = \bigcap_i \ker d_m g_i$. On commence par montrer que :

Lemme. Soit $a, b_1, ..., b_k$ des formes linéaires sur un espace vectoriel E de dimension n tels que les b_i soient linéairement indépendantes. Si $\bigcap_i \ker b_i \subset \ker a$, alors a est combinaison linéaire des b_i .

Démonstration. Complétons la famille des (b_i) pour obtenir une base de E^* $(b_1,...,b_n)$. Alors $a = \sum_{i=1}^n \lambda_i b_i$. Soit $(e_1,...,e_n)$ la base duale. $\forall j > k, \ e_j \in \bigcap_{i=1}^k \ker b_i$ et donc :

$$0 = a(e_j) = \sum_{i=1}^{n} \lambda_i b_i(e_j) = \lambda_j$$

Donc $a = \sum_{i=1}^{k} \lambda_i b_i$.

Soit $v \in T_m \mathcal{M}$, soit $\gamma : I \to E$ une courbe différentiable tracée sur \mathcal{M} passant par m en 0 telle que $\gamma'(0) = v$. $f \circ \gamma$ admet un extrêmum en 0, donc :

П

$$0 = \frac{d}{dt}f \circ \gamma(0) = d_m f.v$$

Donc $\bigcap_i \ker d_m g_i = T_m \mathcal{M} \subset \ker d_m f$, et donc, d'après le lemme :

$$\exists \lambda_1, ..., \lambda_k \in \mathbb{R} \mid d_m f = \sum_{i=1}^k \lambda_i d_m g_i$$

Théorème 2 (Application à l'inégalité d'Hadamard). $\forall v_1, ..., v_n \in \mathbb{R}^n$,

$$|\det(v_1, ..., v_n)| \le ||v_1|| ... ||v_n||$$

avec égalité si, et seulement si, $(v_1, ..., v_n)$ est une base orthogonale ou si un des v_i est nul.

Démonstration. On pose $f:(v_1,...,v_n)\mapsto \det(v_1,...,v_n)$ et $X\subset (\mathbb{R}^n)^n$ défini par $||v_1||=...=||v_n||=1$. X est le produit cartésien des sphères unités, et donc est compact. Comme de plus f est continue (car polynômiale), f admet des extrêma sur X. Si $(e_1,...,e_n)$ est la base canonique, elle est dans X et $f(e_1,...,e_n)=1$ et $f(-e_1,e_2,...,e_n)=-1$. On a alors :

$$\min_X f \le -1 \text{ et } \max_X f \ge 1$$

Posons ensuite $g_i(v_1,...,v_n) = ||v_i||^2 - 1$. Pour tous $v = (v_1,...,v_n)$ et $h = (h_1,...,h_n)$, on a $d_v g_i.h = 2v_i.h_i$. Donc les $(d_v g_i)_i$ sont linéairement indépendantes $\forall v \in X$ (je rappelle qu'on étudie l'indépendance linéaire par rapport à h). Comme de plus, f est différentiable sur X qui est défini par les équations $g_i(v) = 0$, le théorème des extrêma liés s'applique.

Soit v un extrêmum de f dans X. Il existe des réels $\lambda_1, ..., \lambda_n$ tels que $d_v f.h = \sum_i \lambda_i v_i.h_i$. Or f est linéaire par rapport à sa ie variable, donc :

$$f(v_1,...,v_{i-1},h_i,v_{i+1},...,v_n) = d_v f(0,...,0,h_i,0,...,0) = \lambda_i v_i h_i$$

En particulier, pour $h_i = v_i$, on a $\lambda_i = f(v)$, et donc, comme on l'a montré précédemment, $|\lambda_i| \geq 1$. Pour $h_i = v_j$ où $j \neq i$, on a $0 = \lambda_i v_i.v_j$. Comme λ_i est non nul, on a alors $v_i.v_j = 0$. Autrement dit, les extrêma de f sur X sont des bases orthonormées et :

$$-1 \le f \le 1$$
 sur X, et donc $|f| \le 1$ sur X

Réciproquement, si on a une base orthonormée, son déterminant vaut ± 1 , et donc c'est un extrêmum.

Par homogénéité, on en déduit l'inégalité d'Hadamard dans le cas où tous les v_i sont non nuls, et le résultat est immédiat si l'un des v_i est nul (et c'est bien un cas d'égalité). Dans le cas tous non nuls, si on a égalité, alors on a $|f\left(\frac{v_1}{\|v_1\|},...,\frac{v_n}{\|v_n\|}\right)|=1$, donc $\left(\frac{v_1}{\|v_1\|},...,\frac{v_n}{\|v_n\|}\right)$ est une BON, donc $(v_1,..,v_n)$ est une base orthogonale.